
Information flow control for static enforcement of user-defined privacy policies

Sören Preibusch
Computer Laboratory – University of Cambridge

Email: sdp36@cl.cam.ac.uk

Abstract—Information flow control (IFC) allows software
programmers and auditors to detect and prevent the sharing
of information between different parts of a program which, as
a matter of policy, should be kept logically separate. However,
the lack of widespread use of IFC suggests technology and
usability barriers to adoption.

The programming language JIF provides IFC on top of Java.
To assess pragmatic issues and systematic limitations of using
JIF for commercial privacy-preserving Web applications, we
deliver the first Web-based case-study with customer-negotiated
restrictions on data recipients and usage.

On a practical level, from our experience of programming
in JIF, we assess its suitability for preventing accidental misuse
of personal information and deduce recommendations for
future implementations. On a theoretical level, we explore
the compatibility between static analysis and privacy policies
configured at runtime.

I. PRIVACY ASSURANCES WITH INFORMATION FLOW
CONTROL

Leakage of personal information at high-profile Web sites
has heightened Web users’ privacy concerns. As privacy
is becoming a competitive advantage, enterprises need to
secure users’ personal information against malicious privacy
breaches, but also against unintended data flows due to
carelessness. As manual code inspection has proven labo-
rious and error-prone, mechanised procedures are needed.
Information flow control (IFC) is a technical approach to
prevent the unintended leakage and manipulation of sensi-
tive information, and could provide strong guarantees that
deployed applications respect privacy and security policies
[1]. However, the lack of real-world IFC deployments to
enforce privacy constraints suggests technical and usability
barriers towards adoption.

This paper reports on the first case-study of using IFC
to enforce Web users’ self-defined privacy constraints. The
benefits and limits of JIF, an IFC programming language
built on top of Java, are investigated by implementing
privacy negotiations vis-à-vis an online merchant.

Our threat model assumes consumers who voluntarily
provide their personal information to a Web site, and com-
municate with it restrictions on usage and recipients. Data
recipients may maliciously try to re-purpose information
they receive, or unintentionally process data beyond the
constraints as programmers are fallible.

Our contribution is twofold. At a theoretical level, we
explore systematic limitations of user-specified privacy poli-

cies and their encoding as IFC concepts at runtime, for
enforcement with JIF’s static analysis of information flow.
At a practical level, we study pragmatic issues in producing
privacy-preserving Web applications with JIF, comment on
its suitability for preventing accidental misuse of personal
information, and provide recommendations and software
engineering guidance.

II. BRIEF BACKGROUND ON IFC AND JIF

A. Basic concepts in information flow control

In an imperative programming language, such as Java
and JIF, which builds upon it, variables’ values under
information flow control are monitored to influence each
other only in compliance with a policy, which may be
attached to the variables by means of labels. Explicit flows
(through assignments and various I/O operations) as well as
implicit flows (through control flow and conditional program
execution, including timing and exceptional program termi-
nation) are checked at compile time or runtime with static
or dynamic analysis respectively. To preserve confidentiality,
information is not allowed to flow towards a less restrictive
variable, as established by an ordering over labels. Static
analysis is preferable to enforce IFC constraints, but some
restrictions may only be learned as the program is executed.

B. JIF programming language: “Java + information flow”

JIF [2] extends the Java programming language with
support for information flow control. Labels are attached
to variables when they are declared. The compiler performs
static analysis to enforce IFC constraints: explicitly or im-
plicitly, information is not allowed to flow but in accordance
with a partial order over labels. Because the permissibility
of information flow may depend on inputs not yet available
at compile time, additional runtime checks are woven into
intermediate, augmented Java code which is compiled by the
standard Java compiler against JIF runtime classes.

The Java language syntax is augmented to allow literal
labels and principals in the code, both of which can be
treated as value types in JIF and which carry the IFC con-
straints. Written in curly brackets, JIF labels are composed of
confidentiality policies (owner->reader), and integrity policies
(owner<-writer), both establishing relations over principals.
Multiple policies can be combined with join or meet oper-
ators to represent constraints that must be fulfilled simulta-
neously or alternatively. With certain limitations, principals

Sören Preibusch
Publication details
appears in: POLICY 2011 / Copyright IEEE

BibTex:

@INPROCEEDINGS{Preibusch__IFC-privacy-negotiation-enforcement,
 title = {Information flow control for static enforcement of user-defined privacy policies},
 author = {Preibusch, S{\"o}ren},
 year = {2011},
 month = {June},
 booktitle = {{POLICY 2011 (IEEE International Symposium on Policies for Distributed Systems and Networks)}},
 pages = {157--160},
 doi = {10.1109/POLICY.2011.23},
}

sdp36
Sticky Note
Marked set by sdp36

and labels can also be created and manipulated as objects,
compared using a delegation respectively ‘less restrictive
than’ (<=) ordering at runtime, and applied to other variables.

// create labels; dereference* and apply to variable
final label lEmail = new label {pCustomer->pp};
String{*lEmail} sCustomerEmail = "sdp36@cl";
final label lDatabase = new label {pp->};
String{*lDatabase} sDatabase = "";

// compare labels at runtime with <=
if(lEmail <= lDatabase)
sDatabase += sCustomerEmail + ", ";

For Java operators, the impact on label propagation is
built into the JIF compiler, but the programmer has to
state the information flow introduced by method evaluation.
JIF method signatures carry labels for the return value,
arguments, exceptions thrown by the method and for bounds
on side effects. Method signatures with JIF labels can
also be supplied for native Java methods to expose their
impact on information flow to the compiler. This way, a JIF
programmer can make use of existing Java libraries.

III. SYSTEM ARCHITECTURE AND DEPLOYMENT

We implement an electronic retailing scenario to inves-
tigate the usefulness of JIF as a representative of IFC
programming languages, for enforcing privacy policies on
a production system. This work presents the first case-study
on a statically analysed IFC system where the involved
principals and their privacy requirements are not known
beforehand. Existing language features are put into practice,
rather than extended.

A Linux Apache Web server with the Java runtime but
not the compiler, serves HTTP requests for Web resources
such as stylesheets, images or JavaScript files directly. They
act as auxiliary technologies and become part of the trusted
computing base. The pre-existing JIF runtime classes are
made available to the Java runtime but no further JIF binaries
are required (in particular, not the JIF compiler). A shell
script wraps application-specific JIF programs which are
then invoked via CGI.

Users’ privacy constraints are enquired through the
browser, using a Web form in our case. A textual repre-
sentation of their choices is attached to the form data upon
submission. Once arrived at the Web server, this represen-
tation is parsed by dynamically creating and applying one
JIF label per data item received. The enforcement of privacy
constraints through IFC can only happen thereafter.

Given the inability to attach meta-data to a form sub-
mission in HTML, we have chosen to embed users’
choices regarding recipients and purposes of their data in
the name attribute of input elements, like this: <input

name="email>ShippingDept[OrderNotif]"/>, with the fol-
lowing advantages: (1) the name attribute is the key to
the data value and constituent part of the submission; (2)
the value of the input element remains intact or could be

encrypted whilst leaving the intended recipient in plain-
text; (3) the choice of input element names lies with the
programmer who can designate appropriate delimiters for
the meta-data; (4) restrictions in the HTML specifications on
permissible element names are compatible with embedding
string representations of privacy choices; (5) because Web
browsers auto-complete/pre-fill input elements with values
previously supplied to input elements of the same name,
auto-complete will only work across fields with the same pri-
vacy requirements attached; (6) and similarly, an augmented
name breaks access to the value for Web server applications
unaware of the privacy constraints.

The JIF libraries were augmented to parse the string repre-
sentations of constraints on recipients and purposes, received
as part of a Web form submission, into a dynamic label with
corresponding confidentiality and integrity policies respec-
tively. The orthogonal nature of these privacy restrictions
is, thus, paralleled in the IFC domain. For versatile data
items, such as email, the resulting restrictions are disjoined
with the meet operator, for instance {pShip->pShip meet

pNews->pNews; pShip<-usageNotif meet pNews<-usageAny}.

IV. ENFORCING PRIVACY LABELS

The Web server principal associated with standard input
and output combines Web form values and their correspond-
ing, parsed JIF labels into a wrapper object. When the
labelled personal information is later used in the program,
a runtime check has to be performed that asserts to the
compiler that the label representing restrictions on customer
data is less restrictive the label of variables acting as data
sinks. Otherwise, compilation fails.
// wrapper object: customer data and its label
final label lEmail = oEmail.getLabel();
String{*lEmail} sEmail = oEmail.getVal();

// required minimum permissions on data
final principal usageNotif = new Usage("OrderNotif");
final NamedDataRecipient pShip = oPrincipalFactory
.createRecipient("ShippingDept");

final label lRequShipNotif =
new label {pShip->pShip; pShip<-usageNotif};

String{*lShipNotif} sQueueShipNotif = "";

if(lEmail <= lRequShipNotif)
sQueueShipNotif += sEmail; // violates static analysis
// if runtime check on preceding line is omitted

V. EXPERIENCE OF PROGRAMMING IN JIF

By example, this case-study has demonstrated the feasibil-
ity of using IFC to enforce user-supplied privacy constraints
in commercial systems. However, the considerable effort
required for a functionally simple application casts doubt
on the practical suitability of JIF.

Concerning the system architecture, the observed growth
of the trusted computing base beyond the JIF compiler and
runtime, to include various Web resources, is unfortunate.
Attempts have been made to push the guarantees that JIF

provides further towards the client [3], but some code
portions always need to be trusted.

We encountered systematic limitations regarding JIF. For
our application domain, the single most important issue
is the incompatibility between genericity in parsing and
exposing privacy constraints on form data and their speci-
ficity. An array String{*li}[] sFormData would apply the
same label li across all data items; a function String{*lr}

getFormData(String sKey) requires a static label lr. Data
items, thus, have to be processed and accessed one by one.
Further, the interoperability of dynamic and literal labels is
insufficient, requiring duplication of label expressions and
preventing runtime reasoning over a method’s argument la-
bels. One cannot inspect labels applied to arbitrary variables.

One of JIF’s strongest advantages, the ability to call
methods from existing libraries by providing IFC signatures
for them, comes at the price of introducing potential security
holes by erroneous signatures. Care is required to deduce the
appropriate signature from the relating library documenta-
tion. The method duo appendTail/appendReplacement from the
java.util.regex.Matcher class and I/O methods in general
are particularly challenging examples. Unfortunately, the few
signatures that come bundled with the JIF installation are
incomplete and occasionally do not match with the actual
Java class structures. Provided the source code of imported
Java libraries exists, the compiler may infer suitable method
labels; in practice, however, those were found to be not tight
enough, requiring manual intervention.

We also noticed an incompatibility between JIF and
some software engineering principles. Refactoring repeated
functionality into methods is burdensome as the compiler
may frown upon information flow introduced by the revised
control flow. Similarly, changes to output channels (e.g.,
console vs. file) may result in vast changes to the label logic.
JIF makes it impossible to adhere to a strict factory pattern
with private constructors and the Java access modifiers (pub-
lic/private) are not considered as an implicit label structure.

The author’s personal experience of programming in JIF
includes periods of frustration and a lack of early successes
even for simplistic programs, which could have provided
positive feedback in the learning phase. Admittedly, some
of the encountered difficulties may not apply for a more
advanced JIF programmer. Indeed, the author was able to
reach a “plateau of productivity” where coding in JIF and
Java went equally smoothly. This notably happened after all
variables and method declarations were suitably equipped
with JIF labels and implicit information flows were mostly
eliminated by reordering conditional statements.

The first major issue is the lack of helpful documentation.
The theory-heavy JIF reference manual provides little help
for getting started and the sample program shipped with the
installation package is far too complicated for a JIF novice.
Contrarily to popular programming languages, this lack is
not compensated by community content, except the JIF

mailing list. The JIF runtime is practically undocumented;
the author ultimately guessed its intended use from the
source code and explored language features through the
compiler test cases. The under-documentation of the runtime
is particularly troublesome, as JIF functionality intended to
replace potentially insecure Java functionality is thus not
used. Also regarding documentation, reading the JIF com-
piler error messages requires experience. Misleading output,
compiler crashes, or errors reported in the intermediate Java
code were encountered.

The second major issue is the difficulty in debugging JIF
programs, which has also been reported in other case-studies
(Section VI). Eventually, a Java class was developed by the
author to provide a controlled debug statement that ignores
IFC constraints to print arbitrary content to the console –
in exploiting the aforementioned security hole of inaccurate
method signatures.

It also seems that the ‘syntactic sugar’, which is expanded
during compilation, causes further trouble. Occasionally,
debugging requires one to inspect the intermediate compila-
tion. The ban on some Java constructs by the JIF compiler
such as inner classes was less of an issue, but generics
were missed, for their ability to collect strongly typed data,
including principals or labels.

Recommendations and advice. With poor usability and ed-
ucation as the main barriers towards wider adoption of IFC-
equipped programming, best practices could help developers
starting anew with JIF. We add to the advice given in [4],
whilst noting that it seems superior to program directly in JIF
instead of enriching an initial Java program with IFC. In the
Web companion, available online at http://privacy-calculus.
net/, code snippets are provided for accessing standard input
and standard output for read/write access to the console,
for declassifying data, and for integrating JIF with the Web
server. We further recommend making intensive use of the
ability to provide own principal implementations for custom
privacy needs.

A wish-list to improve to usefulness of JIF for production
environments would include: (1) a starters’ guide, best
practices, and ways out of common compiler errors; (2)
access to inferred JIF labels, including program counter
labels representing information carried through the program
flow. Compiler messages relating to label errors for which
the violating constraints are not represented in the program
but only in the parse tree of the compiler are very difficult
to debug (a common issue with source-expanding pre-
compilation); (3) easy access to JIF’s internal library classes
and constants, at compile time and runtime, such as top and
bottom principals; (4) the support for true reader principals,
who are allowed to read information but not to pass it on any
further. With respect to the overall infrastructure, in which
JIF applications are embedded, the ability for Web users to
submit meta-data along with their form submissions, would
be a valuable addition to the HTML standards.

http://privacy-calculus.net/
http://privacy-calculus.net/

VI. RELATED IFC IMPLEMENTATIONS

JIF’s strengths have attracted the highest number of soft-
ware deployments of current IFC-enhanced programming
languages. The four deployments to date are discussed:

The JPmail email client [5] relies heavily on certificates
to identify extended, cryptographic principals. Textual rep-
resentations of policies are parsed and applied as labels at
compile-time (sic!), as the claimed dynamics in creating
new confidentiality requirements are indeed implemented
by recompiling the entire system from pre-generated code
every time an email is sent. In response to the difficulties
experienced with debugging JIF programs, the Eclipse IDE
was augmented to support JIF, which was perceived as “not
yet ready for industrial development” as of 2006.

A case-study in implementing cryptographic protocols
made two JIF programs communicate via console piping,
at a total overhead of 400% compared to the original
Java program with a single process [4]. Again, only literal
principals and labels were used. Although JIF was found
useful to detect and to prevent insecure information flows,
its all-or-nothing approach to declassification was found too
naı̈ve to fit the multi-faceted declassification needs in prac-
tice. Encryption was again considered in conjunction with
declassification. The deduced patterns to facilitate secure
program development and the uncovered insecurities in JIF
were also confirmed in our work.

At the same time, an endeavour to implement secure
handling of medical information and database security con-
cluded an “impracticality of programming in JIF” [6]. These
“explorations [of the language] were stopped short because
of the overly burdensome complexity of programming in Jif”
[6]. The inadequacy of existing declassification mechanisms
and difficulties in debugging were re-iterated.

Finally, the JIF team developed SIF, a Web application
framework on top of JIF [3]. SIF renders an HTML page
from Java objects on the server. Their labels are woven into
the resulting Web page and read back as further requests
are received. Together with the control flow resulting from
hyperlink navigation, they become a lower bound for the
labels of request parameters and received form data. The
authors do not share their experiences from programming
and deploying SIF.

VII. CONCLUSION AND CRITICAL OUTLOOK

With dynamic labels, information flow control provides
the technical means to enforce runtime-negotiated privacy
constraints. The JIF programming language is a powerful
tool to engineer IFC-supported privacy compliance – and as
such requires expertise. In its current state, novice JIF de-
velopers become easily discouraged and frustration hinders
adoption. This electronic commerce case-study confirmed a
spectrum of usability traps as a major hindrance towards
adoption. It also adds to the body of best practices to help

novice programmers getting a better start with JIF. However,
we foresee further systematic limitations.

Providing JIF signatures for external methods at compile-
time may not be compatible with newly discovered and
invoked Web services as the program runs. Also, whilst
some information flow channels are outside JIF’s threat
model (e.g., timing attacks), JIF’s static analysis is inherently
limited to code that has been written before it gets executed.
Implicit calls to Java methods such as toString or finalize

are under the radar of the JIF compiler.
JIF can help a benevolent company to substantiate its

privacy claims but is not going to stop a malicious company
from misusing personal information. Ongoing work thus
focuses on further commercial data processing with JIF, such
as databases, and to improve auxiliary Web technologies on
the consumer side, to facilitate the configuration of privacy
choices and their communication to the data controller.

ACKNOWLEDGEMENT

Alastair Beresford and Florian Kammüller have pro-
vided helpful comments on earlier versions of this work.
This project is part of research into a “Privacy Calculus”,
jointly supported by the British Council and the Deutscher
Akademischer Austausch Dienst (ARC Project 1351).

REFERENCES

[1] S. Preibusch, “Experiments and formal methods for privacy re-
search,” in Privacy and Usability Methods Pow-wow (PUMP),
August 2010.

[2] A. C. Myers. (1999–2010) Jif: Java + information flow. [On-
line]. Available: http://www.cs.cornell.edu/jif/

[3] S. Chong, K. Vikram, and A. C. Myers, “SIF: Enforcing Con-
fidentiality and Integrity in Web Applications,” in Proceedings
of USENIX Security Symposium 2007, August 2007, pp. 1–16.

[4] A. Askarov and A. Sabelfeld, “Security-typed languages for
implementation of cryptographic protocols: A case study,” in
Computer Security - ESORICS 2005, ser. Lecture Notes in
Computer Science, S. d. C. di Vimercati, P. Syverson, and
D. Gollmann, Eds. Springer Berlin / Heidelberg, 2005, vol.
3679, pp. 197–221.

[5] B. Hicks, K. Ahmadizadeh, and P. McDaniel, “From languages
to systems: Understanding practical application development in
security-typed languages,” in Computer Security Applications
Conference, 2006. ACSAC ’06. 22nd Annual, Dec. 2006, pp.
153–164.

[6] B. Hicks, P. McDaniel, and A. Hurson, “Information flow con-
trol in database security: A case study for secure programming
with Jif,” Network and Security Research Center, Department
of Computer Science and Engineering, Pennsylvania State
University, University Park, PA, USA, Tech. Rep. NAS-TR-
0011-2005, April 2005.

WEB COMPANION

For code snippets and live demo, please see: http://
privacy-calculus.net/

http://www.cs.cornell.edu/jif/
http://privacy-calculus.net/
http://privacy-calculus.net/

