Checking the TWIN Elevator System
by translating Object-Z to SMV

Séren Preibusch! and Florian Kammiiller?

1 German Institute for Economic Research
Mohrenstrafle 58, 10117 Berlin
spreibusch@diw.de
2 Technische Universitit Berlin
Fakultat IV: Elektrotechnik und Informatik
Franklinstrafle 28-29, 10587 Berlin
flokam@cs.tu-berlin.de

Abstract. In the context of large scale industrial installations, model
checking often fails to tap its full potential because of a missing link
between a system’s specification and its functional and non-functional
requirements, like safety. Our work bridges this gap by providing a trans-
lation from the formal specification language Object-Z to the SMV model
checker input language to combine their advantages.

This paper focuses on the translation of the object-oriented features of
Object-Z: operation promotion and communication between objects. We
demonstrate the feasibility of our approach using the example of the
TWIN Elevator system and embed the translation process in the indus-
trial software production workflow.

1 Introduction and Related Work

Software development for industrial purposes differs from application develop-
ment by the nature of the constructed software products and by the nature of the
production process. Industrial software enables the effective and efficient usage of
large installations and equipment in aviation, power generation, logistics, medi-
cal treatment, and production lines. These systems are typically safety-critical;
disturbance of their well-functioning may cause personal or physical damage.

Model checking techniques are used to check properties of these systems; they
provide reliable results by including a system’s whole state space in mathematical
proofs of correctness.

A variety of model checking tools has emerged along with different input
languages. As a standardized input format does not exist yet, interoperability
between users and re-use of specification is hampered. The lack of established au-
thoring tools and intuitive means to structure large specifications are additional
drawbacks. The ability to use Object-Z as a common input language would allow
to overcome these difficulties. Object-Z [4] is an object-oriented extension of the
standardized specification language Z [5]. It has well understood semantics [13]
and benefits from tool support [2], Section 5.

II

Advantages of Combining Object-Z and SMV. Coupling Object-Z as a
system specification language with model checking support manifests advan-
tages when compared to purely verifying Z specifications [19]. These advantages
originate the specification phase and the checking phase in the workflow.

Whereas a Z specification defines a single state space, Object-Z’s classes
with their separate namespaces are especially handy for specifying medium- to
large-scale software systems [12]. The object-oriented specification paradigm is
well adapted to distributed and embedded systems; communicating objects re-
flect the spatial separation of different components. Unlike Z, Object-Z supports
specifying concurrent systems. Multiple instantiation of the same class provides
for easy scalability where Z would have required a manual enumeration of each
instance.

Moreover, translating Object-Z to SMV enables the use of general-purpose
model checking tools. Those profit from a larger community and ongoing research
resulting in performance enhancements.

Finally, there is a difference between Z and SMV in the nature of the prop-
erties that may be expressed (and thus checked). Z and Object-Z specifications
are limited to first order predicate logic whereas SMV is designed for temporal
logic expressed in CTL or LTL formulas. Those temporal formulas are naturally
checked against the specification; in contrast, Z checkers usually only perform
type checks or well-formedness checks.

Previous Work has provided model checking support for the base language Z
[14]. However, its authors have seen the extension to Object-Z as future work.
Especially the object-oriented features make this a non-trivial task. [18] describes
a translation procedure from Object-Z to SMV using ASM as an intermediate
language. Then again, this works lacks considering the semantics of an Object-Z
specification as a description of a system embedded in an environment. Hence,
the translation of operations is problematic. Inter-object communication is hard
to follow and distributed operations operators are not covered. Moreover, that
work does not preserve the structure of an Object-Z specification but instead
flattens the top-level structure provided by classes and modules.

Our contribution is twofold. First, on a concrete level, we present a specifica-
tion of the TWIN elevator system in the formal specification language Object-Z.
We provide a step-by-step translation to an equivalent (Cadence) SMV program
[9]. Second, on an abstract level, we elaborate general rules for the translation
process, focusing on the object-oriented features of Object-Z: operation pro-
motion and communication between objects. In addition, we sketch how the
translation can be integrated rewardingly in the workflow of industrial software
production processes.

The remainder of this paper is organized as follows. The following Section
portrays the TWIN elevator system by ThyssenKrupp. Section 3 is the core of the
paper. It presents the commented TWIN’s specification in Object-Z along with
the SMV equivalents and general translation rules. The resulting SMV program
is enriched by temporal formula stating fairness and safety requirements that are

111

successfully checked. Section 5 embeds the translation process in the industrial
software development process prior to concluding in Section 6 with a summary
and outlook.

2 TWIN Elevator System Case Study

The idea of having an elevator with two independent cabins operating in the
same shaft dates back to the 1930s. However, first attempts to build this efficient
transportation system failed and the engineering of a control system has been
an unsolved problem for almost a century. Only in 2002 ThyssenKrupp installed
the first TWIN elevator system at Stuttgart University.

In a TWIN elevator system, two cabins are arranged
one above the other; they run independently in the same
TWIN shaft — also at different speeds. A safety distance
is kept, depending on the speeds involved. The cabins can
move in different directions, which means that they can
also move toward each other [17]. Because the TWIN cab-
ins cannot sidestep, each TWIN installation comprises at
least one conventional shaft to serve routes that would re-
sult in a crossing of the TWIN cabins (Fig. 1).

A prospective passenger communicates his destination
level no longer within the elevator cabin, but instead by
Destination Selection Control (DSC) terminals mounted
on each floor. The control system then selects one of the
cabins capable to serve the call.

1
L

The informal specification of safety requirements of
ThyssenKrupp has been the basis for their formal expres-
sion by means of formal specification and model check-

t

ing [7]. In [7], we developed a detailed SMV program to Fig.1l. Minimal
check the TWIN’s well-functioning and provide evidence TWIN installation
for the scalability of model checking procedures. However, (schematic view): a
the crafting of an SMV program that large is unrealistic TWIN shaft with
to be carried out in an industrial context. In contrast, it two cabins on the
is more likely that Object-Z specifications are used and left and conven-

developed already in an early project stage.

The earlier results also act as a benchmark for our
translation process in that applying model checking on
an SMV program resulting from an automated translation
should not perform worse than on the hand-made SMV
program.

tional shaft on the
right

In addition, the duo of this paper and the first TWIN case study is an
example for abstraction. The TWIN specification developed in the next section
is just detailed enough to examine fairness and safety requirements.

v

3 Translating Object-Z Specifications to SMV Programs

3.1 Fundamental Object-Z concepts

In Object-Z, graphical schema notation enables the concise structuring of state
and operation specifications and modularizes them into classes. Any schema con-
sists of a declaration part and a predicate part enabling abstract specification
of invariants, pre-conditions and post-conditions. Classes in Object-Z encapsu-
late a state and an initial schema, as well as operation schemas specifying the
methods of an object oriented class. In addition, Object-Z features specific class
constructs for visibility, constant declarations, polymorphism, and inheritance.

The idea of instantiation of an object o of a class C' is naturally represented
by the declaration of a variable o : C' where o then denotes the identity of an
object. Object-Z has a reference semantics [13] and the common object-oriented
dot notation, e.g. o.m to annotate the invocation of an object’s feature.

The so-called schema calculus comprises operators enabling composition of
operations to create new operations, especially in the context of modular sys-
tems. In Object-Z operations are composed by conjunction /A, non-deterministic
choice [|, sequential composition §, and parallel composition ||.

In Section 3.3, we will piecewise present the TWIN’s specification in Object-Z
along with explanations of the newly introduced Object-Z features. We outline
the corresponding translation rule and present the (one or more) resulting SMV
code fragments. We have partitioned large classes; the splits are clearly signed
(.../ [cont’d]). Where appropriate, we skip over specification parts that would
not contribute to introduce new translation rules. In addition to this paper, the
unsplit and unabridged versions are available online [10],[11].

3.2 Directness and Structure Preservation

Our translation from Object Z to SMV is direct in that it identifies concepts of
Object-Z, like propositional logic, basic types, and the class concept, with almost
directly corresponding features of SMV. Where appropriate, the missing seman-
tics is added in the translation process using additional definitions, constraints,
or other constructions as we will see. The striking advantage of this direct trans-
lation is that it is quite obviously structure preserving, i.e. the structure of the
Object-Z classes and SMV modules correspond one to one and the initial and
state schemas of Object-Z have distinct representations in SMV code chunks.
Although the granularity of the operations cannot be preserved, one can show
that the translation distributes over the constructs of SMV used for operation
representation.

3.3 Translation Rules

Type Definitions and Constants. Types and constants used within the
Object-Z specification are defined at its beginning. Types can be defined by

v

enumerating their values or as an integer sub-range. We define a type for the
cabin status and for the storeys.

Expressions in the constant definition are evaluated once during the transla-
tion process; static evaluation is correct as — by definition — Object-Z constants
do not change their values. Definitions for the boolean constants are added. In
SMV, truth values are represented by integers.

CabinStatus ::= vacant | busy LevelGround = min Level
Level == (1..12) LevelTop = maz Level

typedef CabinStatus {vacant, busy};
typedef Level 1..12;

#define LevelGround 1
#define LevelTop 12

#define true 1
#define false O

Classes. Following the object-oriented paradigm, classes are the top-level struc-
turing mechanism in Object-Z. They provide a scope for variables and may
contain operations that change the variables’ values by state transition. Our
specification comprises four classes: A Call class, acting as a datatype for calls
with the attributes from and to coding the route’s endpoints, a Cabin class for
cabins in a conventional shaft or in a TWIN elevator shaft, a class for the DSC,
and a class for the TWIN_System itself.

A class’ state variables are noted inside an Object-Z box. Variables are typed
and can instantiate classes. In SMV, modules provide a similar scoping mecha-
nism.

Call

module Call() {
! from : Level;
to : Level; }

from : Level
to : Level

Initial schema. An Object-Z class can include an INIT schema, assembling
predicates that must hold in the initial state. Initially, a cabin is vacant and
its target level is the current level so that there is no induced call. The current
level is initialized upon instantiation in the TWIN_System class. Cabins in a
TWIN shaft have has_other_cabin set to true and the variables other_curr_level
and other_target_level referring to the other cabin in the same shaft. Therefore,
a TWIN cabin is aware of the other cabin’s position — an information needed
when deciding whether the cabin may accept a call or not.

VI

The predicates over the initial state are translated to an active initialisation
in SMV.

— Cabin :
‘ IniT ‘
curr_level : Level target_level = curr_level
target_level : Level Ltatus = vacant
|

status : CabinStatus
other_curr_level : Level
other_target_level : Level
has_other_cabin : B

module Cabin() {
curr_level : Level;
target_level : Level;
status : CabinStatus;
other_curr_level : Level;
other_target_level : Level;
has_other_cabin : boolean;

init(target_level) := curr_level;
init(status) := vacant;

State Transitions: Precondition and Stimulus. In Object-Z, state tran-
sitions are realized by named operations that change the values of the state
variables enumerated in their A-lists. Below a horizontal line, predicates over
the variables’ values before the state transition are noted (precondition of the
operation). The primed variable names refer to the variables’ values after the
operation’s execution (postcondition).

The operations MoveUp and MoveDown realize the state transition of the cabin
with regard to its current level. The operations’ preconditions assure that the
cabin moves in the direction of its target level and does not run out of the shaft.

For each operation, we introduce two defined boolean variables in the SMV
program. These variables do not add to the state vector and thus do not impact
on the performance of verification. The SMV variable operationname_pre has
the truth value of the precondition. It is hereby also a translation of the Object-Z
expression “pre operationname” that represents the truth value of the operation’s
precondition.

The variable operationname_stimulus indicates whether there is a call of
the operation from the environment. According to the semantics of Object-Z
[12], the specified system is embedded in an environment that may evoke an
operation. Unless this evokation occurs, the state transition specified by the
operation does not take place. This is in contrast to SMV, where each possible
state transition is executed. Hence, the variable operationname_stimulus acts
as an additional guard.

VII

— Cabin [cont’d]

— MoveUp — MoveDown
A(curr_level) A(curr_level)
curr_level < LevelTop curr_level > LevelGround
curr_level < target_level curr_level > target_level
curr_level’ = curr_level + 1 curr_level’ = curr_level — 1
| |

/* operation MoveUp */
MoveUp_pre : boolean;
MoveUp_pre := (curr_level < LevelTop) & (curr_level < target_level);

MoveUp_stimulus : boolean;

/* operation MoveDown */
MoveDown_pre : boolean;
MoveDown pre := (curr_level > LevelGround) & (curr_level > target_level);

MoveDown_stimulus : boolean;

All operations possibly changing a state variable can be identified by examin-
ing their A-lists. For each state variable, the influencing operations are collected;
their respective precondition and stimulus variables guard the state transition
in SMV.

The general schema has the form:

next(variable) := case{
opl_pre & opl_stimulus : opl_postpredicate;
op2_pre & op2_stimulus : op2_postpredicate;

default : variable; }

The last alternative (default) results in the variable to remain unchanged if
none of the operations is executed.

next (curr_level) := case{
MoveUp_pre & MoveUp_stimulus : curr_level + 1;
MoveDown_pre & MoveDown_stimulus : curr_level - 1;
default : curr_level; };

Communication variables. Communication variables can be defined in the
local scope of an operation. Output variables are decorated with an exclama-
tion mark, input variables with a question mark. Communication variables in
opposite directions with the same basename are identified when operations are
combined (see below on page IX).

VIII

The cabin’s operation AcceptCall may record a new_call? for the cabin if the
cabin is currently vacant (first precondition). In addition, if the cabin is a TWIN
cabin (has_other_cabin is true), it can only accept the call in case call processing
would not result in a crash with the other cabin (second precondition).

If the cabin has accepted the call, its status is set to busy and the call’s
attribute to is taken as the cabin’s new target_level. If the cabin has finished a
call, its status is set to vacant.

In the translation to SMV, the communication variable new_call? is prefixed
with in (out for output communication variables) and with the operation name,
to provide for a local scope.

— Cabin [cont’d] ,

_ AcceptCall _ FinishCall
A(status, target_level) A(status)
new_call? : Call .

- curr_level = target_level
has_other_cabin = false V status = busy
(new—call?.to — other_target_level) x status’ = vacant
(curr_level — other_curr_level) > 0

status = vacant

status’ = busy

target_level’ = new_call?.to

/* operation AcceptCall */
AcceptCall pre : boolean;
AcceptCall pre := (has_other _cabin = false) |
((AcceptCall_in new_call.to - other_target_level) *
(curr_level - other_curr_level) > 0) & (status = vacant) ;

AcceptCall _stimulus : boolean;

AcceptCall_in new_call : Call;

/* operation FinishCall */
FinishCall pre : boolean;
FinishCall pre := (curr_level = target_level) & (status = busy);

FinishCall_stimulus : boolean;

next (target_level) := case{
AcceptCall pre & AcceptCall stimulus : AcceptCall_in new_call.to;
default : target_level; };

next(status) := caseq{
AcceptCall_pre & AcceptCall stimulus : busy;
FinishCall pre & FinishCall stimulus : vacant;
default : status; };

IX

Operation Promotion and Communication. Operations defined by oper-
ation schemas may be used to define new operations by composition. These
“operation promotions” are placed inside a class. A new operation op can be
defined by:

— conjunction: op = opl A op2
both opl and op2 are executed

— (non-deterministic) choice: op = opl [op2
one of opl and op2 is arbitrarily chosen and executed. If the precondition of
one of the compounding operations is not fulfilled, the operation is removed
from the choice.

— parallel composition: op = opl || op2
both opl and op2 are executed with bi-directional communication

— sequential composition: op = opl § op2
both opl and op2 are executed with forward communication only

The operators for operation composition can be combined and several operations
can be combined at once.

Communication between operations is realized by matching the communica-
tion variables. Bi-directional communication means that the values of communi-
cation variables with the same basename are identified. Forward communication
means that only the output variables of the first operation are matched with
the input variables of the second operation. An operation lacking communica-
tion variables does not participate in communication. In general, communication
variables need not match; the unmatched communication variables of the com-
posed operations are then simply unified in the signature of the combined oper-
ation. In the case of the choice operator, the unified signatures of the involved
constituent operations must be identical.

Operation Promotion: Choice. We define a new operation Move as the
choice between the operations MoveUp, MoveDown, and FinishCall depending
on whether the cabin’s current level is below, above, or equal its target level. In
case the current level equals the target level, the call has been processed.

Analogously to operations defined by operation schemas, two boolean vari-
ables for stimulus and precondition are introduced in the translation. The pre-
condition of the promoted operation is calculated by combining the preconditions
of the compounding operations (see Table 1).

Operator | Precondition escalation (SMV) | Stimulus propagation | Communication
A\ conjunction (&) conjunction none
I disjunction () exclusive disjunction |none
I conjunction (&) conjunction bi-directional
S conjunction (&) conjunction forward

Table 1. Operation operators overview

Cabin [cont’d]

(Move = MoveUp || MoveDown || FinishCall

Move_pre : boolean;
Move_pre := MoveUp_pre | MoveDown pre | FinishCall pre;

Move_stimulus : boolean;

The non-deterministic choice between two operations susceptible to be chosen
(i.e. whose preconditions evaluate to true) is realized in SMV by assigning a set
of values to a variable. This assignment is understood as that one value of the
set is arbitrarily chosen each time and assigned to the variable.

We use SMV’s construct of guarded set membership when enumerating the
set elements: cond 7 elem means that elem is included in the set if cond eval-
uates to true.

Move_choice : {1,2,3};

Move_choice := {
(MoveUp_pre) 7 1,
(MoveDown_pre) 7 2,
(FinishCall_pre) ? 3 };

The stimulus from the promoted operation propagates to the compounding
operations as defined in Table 1. The arbitrary choice between the set values
assures that the stimulus propagates to only one of the compounding operations:

MoveUp_stimulus :=

(Move_stimulus & Move_choice = 1);
MoveDown_stimulus :=
(Move_stimulus & Move_choice = 2);

FinishCall stimulus :=
(Move_stimulus & Move_choice = 3);

Recapitulative Example: the DSC class. So far we know how to translate
Object-Z classes, state variables, operations, and communication variables to
SMV. We now apply these rules to translate the small DSC' class.

The Destination Selection Control (DSC) terminal registers the passenger’s
ride request. The calls are communicated to the cabins; the storey where the
DSC is mounted (location) is the call’s from attribute. The translation to SMV
follows the principles established above.

DSC

_ PlaceCall
location : Level A()
new_call! : Call

new_call!.from = location

XI

module DSC() {

/* state variables */ /* operation PlaceCall */
location : Level; PlaceCall_pre : boolean;

PlaceCall pre := true;
PlaceCall_stimulus : boolean;

PlaceCall out_new_call : Call ;
PlaceCall_out_new_call.from := location; }

Multiple Instantiation. The class TWIN_System models the TWIN elevator
system. It instantiates the previously defined class Cabin thrice — once for a
conventional cabin and twice for the TWIN cabins. In each storey, a DSC is
mounted, resulting in a functional mapping from a Level to a DSC object.

—_ TWIN _System

dscs : Level — DSC
twin_lower, twin_upper, conventional : Cabin

V1 € dom dscs e dscs(l).location =1

module TWIN_System() {

/* state variables */
dscs : array Level of DSC ;
forall(l in Level)

dscs[1] .location := 1;

twin lower, twin upper, conventional : Cabin;

Operation Promotion: Conjunction. We combine the Move operations of all
cabins in the TWIN_System to a single operation MoveCabins. Since all cabins
move independently, we use an operation operator without communication but
with conjunctive stimulus propagation: the ‘and’ operator A.

TWIN _System [cont’d]

MowveCabins = twin_lower.Move /\ twin_upper. Move /\ conventional. Move

/* operation promotion MoveCabins */

MoveCabins_pre : boolean;

MoveCabins_pre := twin lower.Move_pre | twin upper.Move_pre |
conventional.Move_pre;

XII

MoveCabins_stimulus : boolean;

twin_lower.Move_stimulus := MoveCabins_stimulus;
twin_upper.Move_stimulus := MoveCabins_stimulus;
conventional.Move_stimulus := MoveCabins_stimulus;

A priori, a call may be processed by any of the available cabins. Any of the
cabins capable of processing the call may accept it (see the operation AcceptCall
in the Cabin class). Therefore, we use a non-determistic choice [. The call
accepting by the cabins occurs in parallel (||) with the call placing by the DSCs.

We use a ‘distributed’ choice (H) between the PlaceCall operations of all DSC
objects.

Distributed Operation Promotion. The distributed choice operator in Object-
Z provides a non-deterministic choice over a range of objects whose methods are
enabled. In SMV, the distributed precondition escalation is realized by apply-
ing the boolean precondition combination operator over an array constructed of
all individual operations’ preconditions: f [expr (var) : var in Type] applies
the operator £ (| or & according to Table 1) distributively over all expressions
expr (var).

The set of choice alternatives is constructed analogously by using SMV’s
iterative construction capabilities: the expression expr (var) is included in the
set {expr (var) : var in Type, cond(var)}if cond (var) evaluates to true.

Finally, the stimulus propagation iterates over all DSC object’s PlaceCall
operations indexed by 1 in Level. We observe another structure preservation
property in that the distributivity is preserved and an explicit enumeration of
all DSC instances is not necessary during the translation process.

TWIN _System [cont’d]

DistributeCalls = |:|l : Level o dscs(l).PlaceCall ||
(twin_lower.AcceptCall || twin_upper.AcceptCall || conventional.AcceptCall)

/* operation promotion DistributeCalls */

DistributeCalls_pre : boolean;

DistributeCalls_pre := |[dscs[1].PlaceCall pre : 1 in Level] &
(twin lower.AcceptCall_pre | twin upper.AcceptCall pre |
conventional.AcceptCall _pre) ;

DistributeCalls_stimulus : boolean;

DistributeCalls_choice : {1,2,3};

DistributeCalls_choice := {
(twin_lower.AcceptCall pre) 7 1,
(twin upper.AcceptCall pre) 7 2,
(conventional.AcceptCall_pre) 7 3 };

XIII

DistributeCalls_choice_2 : Level;
DistributeCalls_choice 2 := { 1 : 1 in Level, dscs[1].PlaceCall_pre};

twin lower.AcceptCall_stimulus :=
(DistributeCalls_stimulus & DistributeCalls_choice = 1);

twin upper.AcceptCall_stimulus :=
(DistributeCalls_stimulus & DistributeCalls_choice = 2);

conventional.AcceptCall stimulus :=
(DistributeCalls_stimulus & DistributeCalls_choice

3);

forall(l in Level)
dscs[1] .PlaceCall_stimulus :=
(DistributeCalls_stimulus & DistributeCalls_choice_ 2 = 1);

Matching Communication Variables. The parallel operator || results in a
communication between the chosen PlaceCall operation and the chosen Accept-
Call operation as described on page IX: AcceptCall_in new_call is assigned
the value of PlaceCall out_new_call in case the DistributeCall operation is
stimulated. The communication is conditioned over the choice ([]) only with
regard to the outputting operation (realized by DistributeCalls_choice_2 in
the translation to SMV). It must not be conditioned with regard to the choice
of the receiving operation: because choosability depends on an operation’s pre-
condition, which in turn may depend on an input variable, a circular definition
would occur.

/* operation promotion DistributeCalls - communication */
twin lower.AcceptCall_in new_call := case {
DistributeCalls_stimulus
dscs[DistributeCalls_choice_2] .PlaceCall_out_new_call; };

twin_ upper.AcceptCall_in new_call := case {
DistributeCalls_stimulus
dscs[DistributeCalls_choice_2] .PlaceCall_out_new_call; };

conventional.AcceptCall_in new_call := case {

DistributeCalls_stimulus
dscs[DistributeCalls_choice_2] .PlaceCall_out_new_call; };

Finally, we combine the TWIN system’s two tasks (cabin movement and call
management) in a single Operate operation.

TWIN _System [cont’d]

Operate = MoveCabins /\ DistributeCalls

X1V

/* operation promotion Operate */
Operate_pre : boolean;
Operate_pre := true;

Operate_stimulus : boolean;

MoveCabins_stimulus := Operate_stimulus;
DistributeCalls_stimulus := Operate_stimulus;

Adding the main module. SMV requires one main module in each program.
All top-level modules are instantiated once in this module. Also, the stimulus
for all operations not used to construct any other operation inside the Object-Z
specification is set to true to assure that a ‘running’ system is checked. As we
aim at an automated mechanical translation procedure, it is noteworthy that
these operations are easy to enumerate.

module main() {
system : TWIN_System(Q);
system.Operate_stimulus := true; }

4 Model Checking the Translation with SMV

After the Object-Z specification has been translated in SMV, one can enrich the
program by (temporal) formulas expressing crucial system requirements. As an
illustration, we express requirements regarding fairness, correct call processing,
and safety in SMV:

For each cabin, the Fairness properties state that a call will be finished:
always, if the cabin is busy, it will be vacant in the future:

Fairness_1 : assert
G (system.twin lower.status = busy) ->
F (system.twin lower.status = vacant);
Fairness_2 : assert
G (system.twin upper.status = busy) ->
F (system.twin upper.status = vacant);
Fairness_3 :
assert
G (system.conventional.status = busy) ->
F (system.conventional.status = vacant);

The Processing properties assure that the call termination is only achieved
if the cabin really reaches its target level.

Processing 1 : assert G (system.twin lower.status = busy)

U (system.twin lower.curr_level = system.twin lower.target_level);
Processing 2 : assert G (system.twin upper.status = busy)

U (system.twin upper.curr_level = system.twin upper.target_level);
Processing 3 : assert G (system.conventional.status = busy)

U (system.conventional.curr_level = system.conventional.target_level);

XV

For the TWIN shaft, the Safety property would be violated in case of a
crash. It requires the upper TWIN cabin to always stay above the lower TWIN
cabin.

Safety : assert
G (system.twin upper.curr_level > system.twin lower.curr_level);

The assertions are noted in the SMV main module, thence prefixed with
system. to reference the objects. One can place assertions in any module; we
opted for the main module to emphasize on the separation between the specified
system and the requirements towards it.

All properties together were successfully checked within seconds on standard
desktop hardware. SMV allocated 34881 BDD nodes. Experiments showed that
the time necessary to check the properties is only marginally influenced by the
number of storeys.

To leverage this verification potential during the software development pro-
cess, we have automated the translation process in a web-based prototype (called
ZOE) and sketch its workflow embedding in the next section.

5 Workflow Embedding

The industrial software development process exhibits specifities that require fit-
ted management and tools. The engineering of complex software systems on
a large scale usually involves many developers, possibly from different back-
grounds. Tightly coupled heterogenous components in an installation are devel-
oped by cross-functional teams. Each of the team members is an expert in one
domain of the software’s functionality. Documentation along the process is cru-
cial and the documents regularly are one of the manufacturer’s deliverables. For
this reason, the documents need to be well presented, with appropriate languages
and notations, so that they can be understood accurately and used effectively
8]

However, domain-specific language dialects across departments often hamper
a holistic documentation and complicate the cooperation inside the development
team. Requirements are typically expressed in a different language than the
system description (e.g. CTL formula for safety requirements vs. Object-Z as a
common language for the functional specification) and inspectors may also be
an external party not involved in the software development process.

A unifying formal methods approach can conciliate between these different
formalisms and promises advances in product and process quality: the software
will better fulfill its requirements and adherence to delivery dates and budget
will be improved. Similar endeavors have been undertaken in the Alloy project
[16]. The Alloy Analyzer is a tool that checks properties on a model, visualizes,
and simulates it. However, the Alloy Analyzer is a ‘model finder’ that finds
any model satisfying a logical formula, rather than checking a formula on an
operationally specified model.

XVI

Our portrayed translation from an Object-Z specification to a checkable
software model bridges the described gap and brings together domain-experts
from functionality specification and requirements checking. Functional and non-
functional requirements can be checked as demonstrated exemplarily in the pre-
vious section. In case an error is found, a counterexample is generated and the
detected discrepancy between the required and the actual behaviour can be
traced back to the original specification because of the structure-preservation.
If, for instance, a property is breached subsequent to a state transition, the op-
erations causing the state transition are enumerated. The manual workload is
reduced and applicability of formal methods is thereby extended.

To support the workflow, we have developed a web-based authoring envi-
ronment for Object-Z specifications, ZOE, sce Fig.2. The translation process
described in this paper is implemented as a prototype fully integrated with our
front end tool ZOE.

A domain-expert can develop the specification inside his browser, and the
web-based infrastructure supports collaborative engineering. In contrast to pre-
vious tool support, no special software installations or plugins are needed. The
editor and the translator are implemented using HTML, CSS and JavaScript
— available with any current browser. The editor alleviates the expert’s tasks
as it allows an interactive specification development. The formulated Object-Z
specification can be exported by means of output/formatter plugins.

The checked model can be refined to an executable program, so that end-
to-end quality assurance can be achieved [1]. The refinement may be carried
out based on the generated SMV program as the translation produces an easily
readable output: variable names are maintained and so is the specification’s
inherent structure.

The on the fly checking of the fairness and safety properties of our TWIN
case study provides evidence for applicability also for larger systems.

6 Conclusion and Discussion

We have established and explained rules for translating an Object-Z specification
to a corresponding SMV program. These rules make full use of the close corre-
spondence between many important features of Object-Z and SMV whilst being
careful not to identify syntactical similarities whose semantics do not match.
Besides propositional logic and basic datatypes, one major correspondence we
identified is that of prestate and poststate. We cover the object-oriented con-
cepts of Object-Z and non-deterministic choice, and we successfully cope with
object communication and operation promotion.

Object-Z is a powerful specification formalism and it is generally not possible
to represent it in its entirety in the input language of SMV. However, using
simple restrictions of infinite base types and limiting the predicate language to
equations and simple quantified expressions, we arrive at a useful subset of the
original specification language that can be verified automatically with standard
model checking techniques.

3 Object-Z Web Editor - Mozilla Firefox

Datei Bearbeiten Ansicht Gehe Lesezeichen Extras Hife

Ga -+ @ 0 @ [hitpulpreibusch.defprojectsiOZWES ¥| @ [C. |
| L object-z Web Editor |]

Direction = up | down | stationary
CaliStatus = waiting | processed | finished
Level:=(1..12)

Click on a highlighted specification fragment to edit

" it. Right-click on specification fragrment to delets it
Dragédrop to move state schemas or operation
schemas

LevelGround, LevalTop: Level

SafetyDistance : N H ExportfConvert specification: | please select format H
Velocitylp, VelociylpSlow: IN Trace back error in export: line: [find H
VeloctyDown, VelociyDownSlow: IN .-

LevelGround= min Level
LevelTop= max Level
Safetyistance=3

0 < VelociyUpSiows Velociyllp

0 < VelocityDownSiows VelocityDown

FON pecification contains one or mare
<= placeholders in newly added specification

,,,,,,, fagments.
— Call

add Yisibility List

« predicate »

from, to: Lever

status : CalStatus 1£05g O debug mode T v
H redraw specification restart H

add Secondary Yariables S

from # to Il Object-Z Web Editar, Stren Preibusch, DIV Berlin

M feedback is welcame send bug report
r LSS 3

Fertig

Fig. 2. The ZOE Workspace

The resulting translation enables the further application of model checking
techniques to verify the specified system’s correct behaviour. We therefore embed
the translation procedure in the industrial software production process and have
developed appropriate web-based tool support.

Our method’s suitability is attested by its application to the cutting-edge
TWIN elevator case-study. Starting from a concise system specification in Object-
Z, we employ the translation algorithm to optain a checkable TWIN model.
Fairness and safety requirements are verified on this model within seconds.

The approach we take in this work is pragmatic but sound. Although sound-
ness is not formally verified, it is fairly evident as we exploit natural similarities
between state based specification in Object-Z and the state model of SMV. The
integration of temporal logics and Object-Z semantics is furthermore based on
well-established results [3], [15].

A very important point in favour of our approach to translating Object-Z into
SMV directly, that makes it stand out in comparison to other similar endevours,
is its shallowness [6]: the concepts of the application are identified in a one-to-
one fashion with concepts of the formal target language. Here the application
is Object-Z and the formal target language is SMV. The striking advantage of
shallowness is that we inherit the full expressiveness of the target language and
hence the full power of any available support.

XVIII

References

1. Tobias Amnell. Code Synthesis for Timed Automata. Thesis, Uppsala University,
2003.

2. The Community Z Tools project, 2006. http://czt.sourceforge.net/

3. John Derrick and Graeme Smith. Linear temporal logic and Z refinement. Algebraic
Methodology and Software Technology (AMAST 2004). Springer LNCS 3116, 2004.

4. Roger Duke and Gordon Rose. Formal Object-Oriented Specification Using Object-
7. Cornerstones of Computing. MacMillan, 2000.

5. International Organization for Standardization: ISO/IEC 13568:2002: Information
technology — Z formal specification notation — Syntax, type system and semantics.
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=21573

6. Florian Kammiiller Interactive Theorem Proving in Software FEngineering.
Habilitationsschrift, Technische Universitat Berlin, 2006.

7. Florian Kammiiller and Séren Preibusch. An Industrial Application of Symbolic
Model Checking — The TWIN-Elevator Case Study. Accepted for publication in In-
formatik Forschung und Entwicklung. Springer, 2007.

8. Shaoying Liu. Formal Engineering for Industrial Software Development. Springer,
2004

9. Ken McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1995.

10. Soéren Preibusch. TWIN Elevator System, Concise Object-Z Specification, 2007
http://preibusch.de/projects/TWIN/Concise_0Z

11. Soéren Preibusch. TWIN Elevator System, Concise Object-Z Specification
(Translation to SMV), 2007
http://preibusch.de/projects/TWIN/Concise_0Z_Translation SMV

12. Graeme Smith. The Object-Z Specification Language. Advances in Formal Methods,
Kluwer Academic Publishers, 2000.

13. Graeme Smith and Florian Kammiiller, Thomas Santen. Encoding Object-Z in
Isabelle/HOL. ZB 2002: Formal Specification and Development in Z and BSpringer
LNCS 2272, 2002.

14. Graeme Smith and Luke Wildman. Model Checking Z Specifications Using SAL.
ZB 2005: Formal Specification and Development in Z and B. Springer LNCS 3455,
2005.

15. Graeme Smith and Kirsten Winter. Proving temporal properties of Z specifications
using abstraction. International Conference of Z and B Users (ZB2003). Springer
LNCS 2651, 2003.

16. Software Design Group, MIT Computer Science and Artificial Intelligence Labo-
ratory. The Alloy Analyzer, 2007. http://alloy.mit.edu/

17. ThyssenKrupp Elevator. TWIN Report, 2005
http://www.twin.thyssenkrupp-elevator.de/7&L=1

18. Kirsten Winter and Roger Duke. Model Checking Object-Z using ASM. Integrated
Formal Methods: Third International Conference, IFM 2002. Springer LNCS 2335,
2002.

19. The World Wide Web Virtual Library: The Z notation. Tool support, 2005
http://vl.zuser.org/#tools

